In this paper, we describe how to plant novel types of backdoors in any facial recognition model based on the popular architecture of deep Siamese neural networks. These backdoors force the system to err only on natural images of specific persons who are preselected by the attacker, without controlling their appearance or inserting any triggers. For example, we show how such a backdoored system can classify any two images of a particular person as different people, or any two images of a particular pair of persons as the same person, with almost no effect on the correctness of its decisions for other persons. Surprisingly, we show that both types of backdoors can be implemented by applying linear transformations to the model's last weight matrix, with no additional training or optimization, using only images of the backdoor identities. A unique property of our attack is that multiple backdoors can be independently installed in the same model by multiple attackers, who may not be aware of each other's existence, with almost no interference. We have experimentally verified the attacks on a SOTA facial recognition system. When we tried to individually anonymize ten celebrities, the network failed to recognize two of their images as being the same person in $97.02\%$ to $98.31\%$ of the time. When we tried to confuse between the extremely different-looking Morgan Freeman and Scarlett Johansson, for example, their images were declared to be the same person in $98.47 \%$ of the time. For each type of backdoor, we sequentially installed multiple backdoors with minimal effect on the performance of each other (for example, anonymizing all ten celebrities on the same model reduced the success rate for each celebrity by no more than $1.01\%$). In all of our experiments, the benign accuracy of the network on other persons barely degraded (in most cases, it degraded by less than $0.05\%$).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2020年3月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员