We propose a Short-term Traffic flow Prediction (STP) framework so that transportation authorities take early actions to control flow and prevent congestion. We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology. To cope with the fact that existing approaches do not adapt to variation in traffic, we show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of the various events that CV realistically encountered on segments along their trajectory. We solve the STP problem with a Deep Neural Networks (DNN) in a multitask learning setting augmented by input from CV. Results show that our approach, namely MTL-CV, with an average Root-Mean-Square Error (RMSE) of 0.052, outperforms state-of-the-art ARIMA time series (RMSE of 0.255) and baseline classifiers (RMSE of 0.122). Compared to single task learning with Artificial Neural Network (ANN), ANN had a lower performance, 0.113 for RMSE, than MTL-CV. MTL-CV learned historical similarities between segments, in contrast to using direct historical trends in the measure, because trends may not exist in the measure but do in the similarities.


翻译:我们提议了一个短期交通流量预测框架,以便运输当局尽早采取行动控制流量和防止拥堵,我们预计今后在基于历史流量数据以及连接车辆技术提供的实时反馈和轨迹数据等创新特征的基础上,目标路段将在未来的时间框架内流动。为了应对现有办法不适应交通差异这一事实,我们展示了这种新颖办法如何通过将CV实际遇到的各种活动对其轨道各部分的影响纳入流量预测而实现先进的建模。我们用深神经网络(DNNN)在多任务学习环境中解决了STP问题。结果显示,我们的方法,即MTL-CV,即平均的根-海洋误差(RMSE)为0.052,它比ARIMA最新时间序列(0.255的RMSE)和基线分类(0.122的RMSE)。与人工神经网络(ANN)的单项任务学习相比,ANNNE在多任务学习环境中的学习中表现较低,而MS-C的成绩为0.113,因为MS-MS-RMS-S-RMS-S-C在历史相似度指标中可能比MMMS-RMS-S-RMS-S-S-S-S-S-S-S-S-S-S-C在历史相似性平比SMMS-RDMS-S-S-S-RDMS-S-S-S-S-S-S-SMS-S-S-S-S-S-S-SDS-S-S-S-S-S-S-SMSDSDSDSDS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-C-SDMS-C/C/C/C/C-C-C-C-C-C-C-C-C/C/C/C/C/C/C/C-C-C/C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
多标签学习的新趋势(2020 Survey)
专知会员服务
43+阅读 · 2020年12月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年2月3日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
43+阅读 · 2020年12月6日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员