As a result of 33 intercontinental Zoom calls, we characterise big Ramsey degrees of the generic partial order. This is an infinitary extension of the well known fact that finite partial orders endowed with linear extensions form a Ramsey class (this result was announced by Ne\v set\v ril and R\"odl in 1984 with first published proof by Paoli, Trotter and Walker in 1985). Towards this, we refine earlier upper bounds obtained by Hubi\v cka based on a new connection of big Ramsey degrees to the Carlson--Simpson theorem and we also introduce a new technique of giving lower bounds using an iterated application of the upper-bound theorem.


翻译:---- 泛偏序列的大Ramsey度数的表征 研究论文摘要: 通过33个洲际Zoom会议的结果,我们对泛偏序列的大Ramsey度数进行了表征。这是对众所周知的有限偏序列线性扩展为Ramsey类的事实进行无限扩展的结果(这一结果由Ne\v set\v ril和R\"odl在1984年宣布,由Paoli、Trotter和Walker在1985年第一次发表)。 为此,我们进一步优化了Hubi\v cka早期得出的上界,并引入了一种新技术,通过上限定理的迭代应用给出下界,与Carlson--Simpson定理产生联系。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
124+阅读 · 2020年9月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员