Integrated sensing and communication (ISAC) networks are investigated with the objective of effectively balancing the sensing and communication (S&C) performance at the network level. Through the simultaneous utilization of multi-point (CoMP) coordinated joint transmission and distributed multiple-input multiple-output (MIMO) radar techniques, we propose an innovative networked ISAC scheme, where multiple transceivers are employed for collaboratively enhancing the S&C services. Then, the potent tool of stochastic geometry is exploited for characterizing the S&C performance, which allows us to illuminate the key cooperative dependencies in the ISAC network and optimize salient network-level parameters. Remarkably, the Cramer-Rao lower bound (CRLB) expression of the localization accuracy derived unveils a significant finding: Deploying N ISAC transceivers yields an enhanced average cooperative sensing performance across the entire network, in accordance with the ln^2N scaling law. Crucially, this scaling law is less pronounced in comparison to the performance enhancement of N^2 achieved when the transceivers are equidistant from the target, which is primarily due to the substantial path loss from the distant base stations (BSs) and leads to reduced contributions to sensing performance gain. Moreover, we derive a tight expression of the communication rate, and present a low-complexity algorithm to determine the optimal cooperative cluster size. Based on our expression derived for the S&C performance, we formulate the optimization problem of maximizing the network performance in terms of two joint S&C metrics. To this end, we jointly optimize the cooperative BS cluster sizes and the transmit power to strike a flexible tradeoff between the S&C performance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2019年4月4日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员