For the general class of residual distribution (RD) schemes, including many finite element (such as continuous/discontinuous Galerkin) and flux reconstruction methods, an approach to construct entropy conservative/ dissipative semidiscretizations by adding suitable correction terms has been proposed by Abgrall (J.~Comp.~Phys. 372: pp. 640--666, 2018). In this work, the correction terms are characterized as solutions of certain optimization problems and are adapted to the SBP-SAT framework, focusing on discontinuous Galerkin methods. Novel generalizations to entropy inequalities, multiple constraints, and kinetic energy preservation for the Euler equations are developed and tested in numerical experiments. For all of these optimization problems, explicit solutions are provided. Additionally, the correction approach is applied for the first time to obtain a fully discrete entropy conservative/dissipative RD scheme. Here, the application of the deferred correction (DeC) method for the time integration is essential. This paper can be seen as describing a systematic method to construct structure preserving discretization, at least for the considered example.


翻译:Abgrall(J. ~Comp.~Phys. 372: pp. 640-666, 2018年)建议,对于一般的剩余分配(RD)计划类别,包括许多有限要素(如连续/不连续的Galerkin)和通量重建方法,采用一种方法,通过添加适当的修正术语来构建对流保守/消散半分化的微粒子保守/消散半分化(J. ~Comp. ~Phys. 372: pp. 640-666, 2018年),在这项工作中,修正术语被定性为某些优化问题的解决办法,并适应SBP-SAT框架,侧重于不连续的Galerkin方法。本文可以视为描述一种系统化结构维护离散化的方法,至少对于深思熟虑的示例而言。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2021年8月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2021年8月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员