3D object classification is a crucial problem due to its significant practical relevance in many fields, including computer vision, robotics, and autonomous driving. Although deep learning methods applied to point clouds sampled on CAD models of the objects and/or captured by LiDAR or RGBD cameras have achieved remarkable success in recent years, achieving high classification accuracy remains a challenging problem due to the unordered point clouds and their irregularity and noise. To this end, we propose a novel state-of-the-art (SOTA) 3D object classification technique that combines topological data analysis with various image filtration techniques to classify objects when they are represented using point clouds. We transform every point cloud into a voxelized binary 3D image to extract distinguishing topological features. Next, we train a lightweight one-dimensional Convolutional Neural Network (1D CNN) using the extracted feature set from the training dataset. Our framework, TACO-Net, sets a new state-of-the-art by achieving $99.05\%$ and $99.52\%$ accuracy on the widely used synthetic benchmarks ModelNet40 and ModelNet10, and further demonstrates its robustness on the large-scale real-world OmniObject3D dataset. When tested with ten different kinds of corrupted ModelNet40 inputs, the proposed TACO-Net demonstrates strong resiliency overall.
翻译:暂无翻译