Differential-algebraic equations (DAEs) have been used in modeling various dynamical systems in science and engineering. Several preprocessing methods for DAEs, such as consistent initialization and index reduction, use structural information on DAEs. Unfortunately, these methods may fail when the system Jacobian, which is a functional matrix, derived from the DAE is singular. To transform a DAE with a singular system Jacobian into a nonsingular system, several regularization methods have been proposed. Most of all existing regularization methods rely on symbolic computation to eliminate the system Jacobian for finding a certificate of singularity, resulting in much computational time. Iwata--Oki--Takamatsu (2019) proposed a method (IOT-method) to find a certificate without symbolic computations. The IOT method approximates the system Jacobian by a simpler symbolic matrix, called a layered mixed matrix, which admits a fast combinatorial algorithm for singularity testing. However, it often overlooks the singularity of the system Jacobian since the approximation largely discards algebraic relationships among entries in the original system Jacobian. In this study, we propose a new regularization method extending the idea of the IOT method. Instead of layered mixed matrices, our method approximates the system Jacobian by more expressive symbolic matrices, called rank-1 coefficient mixed (1CM) matrices. This makes our method more widely applicable. We give a fast combinatorial algorithm for finding a singularity certificate of 1CM-matrices, which is free from symbolic elimination. Our method is also advantageous in that it globally preserves the solution set to the DAE. Through numerical experiments, we confirmed that our method runs fast for large-scale DAEs from real instances.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员