This survey comprehensively reviews the evolving field of multi-robot collaborative Simultaneous Localization and Mapping (SLAM) using 3D Gaussian Splatting (3DGS). As an explicit scene representation, 3DGS has enabled unprecedented real-time, high-fidelity render- ing, ideal for robotics. However, its use in multi-robot systems introduces significant challenges in maintaining global consistency, managing communication, and fusing data from heterogeneous sources. We systematically categorize approaches by their architecture-centralized, distributed- and analyze core components like multi-agent consistency and alignment, communication- efficient, Gaussian representation, semantic distillation, fusion and pose optimization, and real- time scalability. In addition, a summary of critical datasets and evaluation metrics is provided to contextualize performance. Finally, we identify key open challenges and chart future research directions, including lifelong mapping, semantic association and mapping, multi-model for robustness, and bridging the Sim2Real gap.
翻译:暂无翻译