In the analysis of the $h$-version of the finite-element method (FEM), with fixed polynomial degree $p$, applied to the Helmholtz equation with wavenumber $k\gg 1$, the $\textit{asymptotic regime}$ is when $(hk)^p C_{\rm sol}$ is sufficiently small and the sequence of Galerkin solutions are quasioptimal; here $C_{\rm sol}$ is the norm of the Helmholtz solution operator, normalised so that $C_{\rm sol} \sim k$ for nontrapping problems. In the $\textit{preasymptotic regime}$, one expects that if $(hk)^{2p}C_{\rm sol}$ is sufficiently small, then (for physical data) the relative error of the Galerkin solution is controllably small. In this paper, we prove the natural error bounds in the preasymptotic regime for the variable-coefficient Helmholtz equation in the exterior of a Dirichlet, or Neumann, or penetrable obstacle (or combinations of these) and with the radiation condition $\textit{either}$ realised exactly using the Dirichlet-to-Neumann map on the boundary of a ball $\textit{or}$ approximated either by a radial perfectly-matched layer (PML) or an impedance boundary condition. Previously, such bounds for $p>1$ were only available for Dirichlet obstacles with the radiation condition approximated by an impedance boundary condition. Our result is obtained via a novel generalisation of the "elliptic-projection" argument (the argument used to obtain the result for $p=1$) which can be applied to a wide variety of abstract Helmholtz-type problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月17日
Arxiv
0+阅读 · 2024年1月17日
Arxiv
0+阅读 · 2024年1月17日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年1月17日
Arxiv
0+阅读 · 2024年1月17日
Arxiv
0+阅读 · 2024年1月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员