This work deals with an inverse two-dimensional nonlinear heat conduction problem to determine the top and lateral surface transfer coefficients. For this, the \textsc{B}ayesian framework with the \textsc{M}arkov Chain \textsc{M}onte \textsc{C}arlo algorithm is used to determine the posterior distribution of unknown parameters. To handle the computational burden, a lumped one-dimensional model is proposed. The lumped model approximations are considered within the parameter estimation procedure thanks to the Approximation Error Model. The experiments are carried out for several configurations of chamber ventilator speed. Experimental observations are obtained through a complete measurement uncertainty propagation. By solving the inverse problem, accurate probability distributions are determined. Additional investigations are performed to demonstrate the reliability of the lumped model, in terms of accuracy and computational gains.


翻译:这项工作涉及一个反二维的非线性热导导问题, 以确定表层和横向表面转移系数。 为此, \ textsc{ B} ayesian 框架与\ textsc{ M}arkov 链条\ textsc{M} onte\ textsc{C}C}arlo 算法用于确定未知参数的后方分布。 为了处理计算负担, 提出了一个一维的包包式模型。 由于 Approcimation 错误模型模型, 在参数估计程序内考虑了包装模型近似值。 实验针对室内通风速度的几种配置进行。 实验观测是通过完全测量不确定性的传播取得的。 通过解决反向问题, 准确的概率分布得到确定。 额外调查是为了在准确性和计算收益方面证明包装模型的可靠性。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员