Multi-cancer early detection (MCED) tests offer to screen for multiple types of cancer with a single blood sample. Despite their promising diagnostic performance, evidence regarding their population benefit is not yet available. Expecting that benefit will derive from detecting cancer before it progresses to an advanced stage, we develop a general two-stage model to project the reduction in advanced-stage diagnoses given stage-specific test sensitivities and testing ages. The model can be estimated using cancer registry data and values for the mean overall and advanced-stage preclinical sojourn times. We first estimate the model for lung cancer and validate it against the stage shift observed in the National Lung Screening Trial. We then estimate the model for liver, pancreas, and bladder cancer, which have no recommended screening tests, and we project stage shifts under a shared MCED testing protocol. Our framework transparently integrates available data to project reductions in advanced-stage diagnoses due to MCED testing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2020年3月16日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员