The elastic net penalty is frequently employed in high-dimensional statistics for parameter regression and variable selection. It is particularly beneficial compared to lasso when the number of predictors greatly surpasses the number of observations. However, empirical evidence has shown that the $\ell_q$-norm penalty (where $0 < q < 1$) often provides better regression compared to the $\ell_1$-norm penalty, demonstrating enhanced robustness in various scenarios. In this paper, we explore a generalized elastic net model that employs a $\ell_r$-norm (where $r \geq 1$) in loss function to accommodate various types of noise, and employs a $\ell_q$-norm (where $0 < q < 1$) to replace the $\ell_1$-norm in elastic net penalty. Theoretically, we establish the computable lower bounds for the nonzero entries of the generalized first-order stationary points of the proposed generalized elastic net model. For implementation, we develop two efficient algorithms based on the locally Lipschitz continuous $\epsilon$-approximation to $\ell_q$-norm. The first algorithm employs an alternating direction method of multipliers (ADMM), while the second utilizes a proximal majorization-minimization method (PMM), where the subproblems are addressed using the semismooth Newton method (SNN). We also perform extensive numerical experiments with both simulated and real data, showing that both algorithms demonstrate superior performance. Notably, the PMM-SSN is efficient than ADMM, even though the latter provides a simpler implementation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员