This paper analyzes the convergence and generalization of training a one-hidden-layer neural network when the input features follow the Gaussian mixture model consisting of a finite number of Gaussian distributions. Assuming the labels are generated from a teacher model with an unknown ground truth weight, the learning problem is to estimate the underlying teacher model by minimizing a non-convex risk function over a student neural network. With a finite number of training samples, referred to the sample complexity, the iterations are proved to converge linearly to a critical point with guaranteed generalization error. In addition, for the first time, this paper characterizes the impact of the input distributions on the sample complexity and the learning rate.


翻译:本文分析了培训单层神经网络的趋同和一般化情况,因为输入特征遵循高斯混合模型,由有限数量的高斯分布组成。假设标签来自教师模型,地面真伪重量未知,学习问题是通过最大限度地减少学生神经网络的非混凝土风险功能来估计基本教师模型。参照样本的复杂性,有数量有限的培训样本,迭代被证明线性地向临界点汇合,并有保证的概括错误。此外,本文首次描述了投入分布对样本复杂性和学习率的影响。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Beyond Supervised Continual Learning: a Review
Arxiv
0+阅读 · 2022年8月30日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员