Network pruning and quantization are proven to be effective ways for deep model compression. To obtain a highly compact model, most methods first perform network pruning and then conduct network quantization based on the pruned model. However, this strategy may ignore that they would affect each other and thus performing them separately may lead to sub-optimal performance. To address this, performing pruning and quantization jointly is essential. Nevertheless, how to make a trade-off between pruning and quantization is non-trivial. Moreover, existing compression methods often rely on some pre-defined compression configurations. Some attempts have been made to search for optimal configurations, which however may take unbearable optimization cost. To address the above issues, we devise a simple yet effective method named Single-path Bit Sharing (SBS). Specifically, we first consider network pruning as a special case of quantization, which provides a unified view for pruning and quantization. We then introduce a single-path model to encode all candidate compression configurations. In this way, the configuration search problem is transformed into a subset selection problem, which significantly reduces the number of parameters, computational cost and optimization difficulty. Relying on the single-path model, we further introduce learnable binary gates to encode the choice of bitwidth. By jointly training the binary gates in conjunction with network parameters, the compression configurations of each layer can be automatically determined. Extensive experiments on both CIFAR-100 and ImageNet show that SBS is able to significantly reduce computational cost while achieving promising performance. For example, our SBS compressed MobileNetV2 achieves 22.6x Bit-Operation (BOP) reduction with only 0.1% drop in the Top-1 accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月16日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员