We analyze neural network solutions to partial differential equations obtained with Physics Informed Neural Networks. In particular, we apply tools of classical finite element error analysis to obtain conclusions about the error of the Deep Ritz method applied to the Laplace and the Stokes equations. Further, we develop an a posteriori error estimator for neural network approximations of partial differential equations. The proposed approach is based on the dual weighted residual estimator. It is destined to serve as a stopping criterion that guarantees the accuracy of the solution independently of the design of the neural network training. The result is equipped with computational examples for Laplace and Stokes problems.


翻译:我们分析通过物理知情神经网络获得的局部差异方程式的神经网络解决方案,特别是,我们运用传统限值元素错误分析工具,就Laplace和Stokes等式应用的Deep Ritz方法的错误作出结论;此外,我们开发了局部差异方程式神经网络近似的事后误差估计仪;拟议方法以双加权剩余估量仪为基础;该方法将作为一个停止标准,保证解决方案的准确性,而不受神经网络培训的设计影响;结果配有Laplace和Stoks问题的计算示例。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员