Higher-order tensors are well-suited for representing multi-dimensional data, such as images and videos, which typically characterize low-rank structures. Low-rank tensor decomposition has become essential in machine learning and computer vision, but existing methods like Tucker decomposition offer flexibility at the expense of interpretability. The CANDECOMP/PARAFAC (CP) decomposition provides a natural and interpretable structure, while obtaining a sparse solutions remains challenging. Leveraging the rich properties of CP decomposition, we propose a CP-based low-rank tensor function parameterized by neural networks (NN) for implicit neural representation. This approach can model the tensor both on-grid and beyond grid, fully utilizing the non-linearity of NN with theoretical guarantees on excess risk bounds. To achieve sparser CP decomposition, we introduce a variational Schatten-p quasi-norm to prune redundant rank-1 components and prove that it serves as a common upper bound for the Schatten-p quasi-norms of arbitrary unfolding matrices. For smoothness, we propose a regularization term based on the spectral norm of the Jacobian and Hutchinson's trace estimator. The proposed smoothness regularization is SVD-free and avoids explicit chain rule derivations. It can serve as an alternative to Total Variation (TV) regularization in image denoising tasks and is naturally applicable to implicit neural representation. Extensive experiments on multi-dimensional data recovery tasks, including image inpainting, denoising, and point cloud upsampling, demonstrate the superiority and versatility of our method compared to state-of-the-art approaches. The code is available at https://github.com/CZY-Code/CP-Pruner.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员