Most modern deep learning-based multi-view 3D reconstruction techniques use RNNs or fusion modules to combine information from multiple images after independently encoding them. These two separate steps have loose connections and do not allow easy information sharing among views. We propose LegoFormer, a transformer model for voxel-based 3D reconstruction that uses the attention layers to share information among views during all computational stages. Moreover, instead of predicting each voxel independently, we propose to parametrize the output with a series of low-rank decomposition factors. This reformulation allows the prediction of an object as a set of independent regular structures then aggregated to obtain the final reconstruction. Experiments conducted on ShapeNet demonstrate the competitive performance of our model with respect to the state of the art while having increased interpretability thanks to the self-attention layers. We also show promising generalization results to real data.


翻译:最现代的基于学习的多视图3D重建技术在独立编码后,使用RNN或聚合模块将多个图像中的信息合并在一起。 这两个单独的步骤彼此关联松散,无法方便地分享观点。 我们建议使用LegoFormer, 一种基于 voxel 的3D重建变压器模型, 在所有计算阶段使用注意层共享观点。 此外, 我们提议不独立预测每个 voxel, 而不是用一系列低级分解因素来对输出进行对称。 这一重拟可以预测一个物体, 由一套独立的常规结构组成, 然后汇总起来进行最后重建。 在 ShapeNet 上进行的实验展示了我们模型在艺术状态方面的竞争性表现, 同时由于自省层而增加了可解释性。 我们还展示了真实数据的有希望的概括性结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2020年12月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2020年12月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员