Nowadays, cyberattacks are growing exponentially, causing havoc to Internet users. In particular, authentication attacks constitute the major attack vector where intruders impersonate legitimate users to maliciously access systems or resources. Traditional single-factor authentication (SFA) protocols are often bypassed by side-channel and other attack techniques, hence they are no longer sufficient to the current authentication requirements. To alleviate this problem, multi-factor authentication (MFA) protocols have been widely adopted recently, which helps to raise the security bar against imposters. Although MFA is generally considered more robust and secure than SFA, it may not always guarantee enhanced security and efficiency. This is because, critical security vulnerabilities and performance problems may still arise due to design or implementation flaws of the protocols. Such vulnerabilities are often left unnoticed until they are exploited by attackers. Therefore, the main objective of this work is identifying such vulnerabilities in existing MFA protocols by systematically analysing their designs and constructions. To this end, we first form a set of security evaluation criteria, encompassing both existing and newly introduced ones, which we believe are very critical for the security of MFA protocols. Then, we thoroughly review several MFA protocols across different domains. Subsequently, we revisit and thoroughly analyze the design and construction of the protocols to identify potential vulnerabilities. Consequently, we manage to identify critical vulnerabilities in ten of the MFA protocols investigated. We thoroughly discuss the identified vulnerabilities in each protocol and devise relevant mitigation strategies. We also consolidate the performance information of those protocols to show the runtime and storage cost when employing varying number of authentication factors.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
67+阅读 · 2022年4月13日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员