With the growing imbalance between limited medical resources and escalating demands, AI-based clinical tasks have become paramount. As a sub-domain, medication recommendation aims to amalgamate longitudinal patient history with medical knowledge, assisting physicians in prescribing safer and more accurate medication combinations. Existing works ignore the inherent long-tailed distribution of medical data, have uneven learning strengths for hot and sparse data, and fail to balance safety and accuracy. To address the above limitations, we propose StratMed, which introduces a stratification strategy that overcomes the long-tailed problem and achieves fuller learning of sparse data. It also utilizes a dual-property network to address the issue of mutual constraints on the safety and accuracy of medication combinations, synergistically enhancing these two properties. Specifically, we construct a pre-training method using deep learning networks to obtain medication and disease representations. After that, we design a pyramid-like stratification method based on relevance to strengthen the expressiveness of sparse data. Based on this relevance, we design two graph structures to express medication safety and precision at the same level to obtain patient representations. Finally, the patient's historical clinical information is fitted to generate medication combinations for the current health condition. We employed the MIMIC-III dataset to evaluate our model against state-of-the-art methods in three aspects comprehensively. Compared to the sub-optimal baseline model, our model reduces safety risk by 15.08\%, improves accuracy by 0.36\%, and reduces training time consumption by 81.66\%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员