For a given set $\Omega \subseteq \mathbb{C}$, a matrix pair $(E,A)$ is called $\Omega$-admissible if it is regular, impulse-free and its eigenvalues lie inside the region $\Omega$. In this paper, we provide a dissipative Hamiltonian characterization for the matrix pairs that are $\Omega$-admissible where $\Omega$ is an LMI region. We then use these results for solving the nearest $\Omega$-admissible matrix pair problem: Given a matrix pair $(E,A)$, find the nearest $\Omega$-admissible pair $(\tilde E, \tilde A)$ to the given pair $(E,A)$. We illustrate our results on several data sets and compare with the state of the art.


翻译:对于给定集合$\Omega \subseteq \mathbb{C}$,若矩阵对$(E,A)$是正则的、无脉冲的且其特征值位于区域$\Omega$内部,则称其为$\Omega$-容许的。本文针对$\Omega$为线性矩阵不等式(LMI)区域的情形,给出了$\Omega$-容许矩阵对的耗散哈密顿系统表征。基于此结果,我们进一步求解最近$\Omega$-容许矩阵对问题:给定矩阵对$(E,A)$,寻找与给定对$(E,A)$距离最近的$\Omega$-容许对$(\tilde E, \tilde A)$。我们在多个数据集上验证了所提方法的有效性,并与现有最优方法进行了比较。

0
下载
关闭预览

相关内容

在Omega中,资源发放是乐观的(optimistic),每一个应用都发放了所有的可用的资源,冲突是在提交的时候被解决的。Omega的资源管理器,本质上是一个保存着每一个节点的状态关系数据库,并且用不同的乐观并发控制来解决冲突。这样的好处是其大大的提高了调度器的性能(完全的并行,full parallelism)和资源利用率。
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员