Many-hypercube codes [H. Goto, Sci. Adv. 10, eadp6388 (2024)], concatenated ${[[n,n-2,2]]}$ quantum error-detecting codes ($n$ is even), have recently been proposed as high-rate quantum codes suitable for fault-tolerant quantum computing. While the original many-hypercube codes with ${n=6}$ can achieve remarkably high encoding rates (about 30% and 20% at concatenation levels 3 and 4, respectively), they have large code block sizes at high levels (216 and 1296 physical qubits per block at levels 3 and 4, respectively), making not only experimental realization difficult but also logical error rates per block high. Toward earlier experimental realization and lower logical error rates, here we comprehensively investigate smaller many-hypercube codes with $[[6,4,2]]$ and/or $[[4,2,2]]$ codes, where, e.g., $D_{6,4,4}$ denotes the many-hypercube code using $[[6,4,2]]$ at level 1 and $[[4,2,2]]$ at levels 2 and 3. As a result, we found a notable fact that $D_{6,4,4}$ ($D_{6,6,4,4}$) can achieve lower block error rates than $D_{4,4,4}$ ($D_{4,4,4,4}$), despite its higher encoding rate. Focusing on level 3, we also developed efficient fault-tolerant encoders realizing about 60% overhead reduction while maintaining or even improving the performance, compared to the original design. Using them, we numerically confirmed that $D_{6,4,4}$ also achieves the best performance for logical controlled-NOT gates in a circuit-level noise model. These results will be useful for early experimental realization of fault-tolerant quantum computing with high-rate quantum codes.


翻译:多超立方体编码 [H. Goto, Sci. Adv. 10, eadp6388 (2024)],即级联的 ${[[n,n-2,2]]}$ 量子错误检测码($n$ 为偶数),最近被提出作为适用于容错量子计算的高码率量子编码。虽然原始 ${n=6}$ 的多超立方体编码可以实现极高的编码率(在级联级别 3 和 4 时分别约为 30% 和 20%),但它们在高级别下具有较大的码块规模(级别 3 和 4 时每个块分别需要 216 和 1296 个物理量子比特),这不仅使得实验实现困难,也导致每个块的逻辑错误率较高。为了更早的实验实现和更低的逻辑错误率,本文全面研究了使用 $[[6,4,2]]$ 和/或 $[[4,2,2]]$ 码的较小多超立方体编码,其中,例如 $D_{6,4,4}$ 表示在级别 1 使用 $[[6,4,2]]$,在级别 2 和 3 使用 $[[4,2,2]]$ 的多超立方体编码。结果,我们发现了一个值得注意的事实:尽管 $D_{6,4,4}$($D_{6,6,4,4}$)具有更高的编码率,但其块错误率可以低于 $D_{4,4,4}$($D_{4,4,4,4}$)。聚焦于级别 3,我们还开发了高效的容错编码器,与原始设计相比,在保持甚至提升性能的同时,实现了约 60% 的开销降低。使用这些编码器,我们通过数值模拟证实,在电路级噪声模型中,$D_{6,4,4}$ 对于逻辑受控非门也实现了最佳性能。这些结果将有助于利用高码率量子编码早期实验实现容错量子计算。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员