Low earth orbit (LEO) satellite constellations are becoming a cornerstone of next-generation satellite networks, enabling worldwide high-precision navigation and high-quality remote sensing. This paper proposes a novel dual-function LEO satellite constellation frame structure that effectively integrating navigation and remote sensing. Then, the Cramer-Rao bound (CRB)-based positioning, velocity measurement, and timing (PVT) error and the signal-to-ambiguity-interference-noise ratio (SAINR) are derived as performance metrics for navigation and remote sensing, respectively. Based on it, a joint beamforming design is proposed by minimizing the average weighted PVT error for navigation user equipments (UEs) while ensuring SAINR requirement for remote sensing. Simulation results validate the proposed multi-satellite cooperative beamforming design, demonstrating its effectiveness as an integrated solution for next-generation multi-function LEO satellite constellations.
翻译:低地球轨道(LEO)卫星星座正成为下一代卫星网络的基石,能够实现全球范围的高精度导航与高质量遥感。本文提出了一种新颖的双功能LEO卫星星座框架结构,有效集成了导航与遥感功能。随后,推导了基于克拉美-罗界(CRB)的定位、测速与授时(PVT)误差以及信号-模糊干扰噪声比(SAINR),分别作为导航与遥感性能的度量指标。在此基础上,通过最小化导航用户设备(UEs)的平均加权PVT误差,同时保障遥感所需的SAINR要求,提出了一种联合波束成形设计方案。仿真结果验证了所提出的多卫星协同波束成形设计,证明了其作为下一代多功能LEO卫星星座集成解决方案的有效性。