We provide new insights regarding the headline result that Medicaid increased emergency department (ED) use from the Oregon experiment. We find meaningful heterogeneous impacts of Medicaid on ED use using causal machine learning methods. The individualized treatment effect distribution includes a wide range of negative and positive values, suggesting the average effect masks substantial heterogeneity. A small group-about 14% of participants-in the right tail of the distribution drives the overall effect. We identify priority groups with economically significant increases in ED usage based on demographics and previous utilization. Intensive margin effects are an important driver of increases in ED utilization.


翻译:

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2021年7月11日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员