The measured relative entropy and measured Rényi relative entropy are quantifiers of the distinguishability of two quantum states $ρ$ and $σ$. They are defined as the maximum classical relative entropy or Rényi relative entropy realizable by performing a measurement on $ρ$ and $σ$, and they have interpretations in terms of asymptotic quantum hypothesis testing. Crucially, they can be rewritten in terms of variational formulas involving the optimization of a concave or convex objective function over the set of positive definite operators. In this paper, we establish foundational properties of these objective functions by analyzing their matrix gradients and Hessian superoperators; namely, we prove that these objective functions are $β$-smooth and $γ$-strongly convex / concave, where $β$ and $γ$ depend on the max-relative entropies of $ρ$ and $σ$. A practical consequence of these properties is that we can conduct Nesterov accelerated projected gradient descent / ascent, a well known classical optimization technique, to calculate the measured relative entropy and measured Rényi relative entropy to arbitrary precision. These algorithms are generally more memory efficient than our previous algorithms based on semi-definite optimization [Huang and Wilde, arXiv:2406.19060], and for well conditioned states $ρ$ and $σ$, these algorithms are notably faster.


翻译:测量相对熵与测量Rényi相对熵是量化两个量子态$ρ$与$σ$可区分性的度量。它们被定义为通过对$ρ$和$σ$执行测量所能实现的经典相对熵或Rényi相对熵的最大值,并在渐近量子假设检验中具有解释意义。关键的是,它们可以重写为涉及在正定算子集上优化凹或凸目标函数的变分公式。本文通过分析这些目标函数的矩阵梯度与Hessian超算符,建立了这些目标函数的基础性质;具体而言,我们证明了这些目标函数是$β$-光滑且$γ$-强凸/凹的,其中$β$和$γ$取决于$ρ$与$σ$的最大相对熵。这些性质的一个实际结果是,我们可以执行Nesterov加速投影梯度下降/上升(一种经典的优化技术)来计算测量相对熵与测量Rényi相对熵至任意精度。这些算法通常比我们先前基于半定优化的工作[Huang and Wilde, arXiv:2406.19060]更具内存效率,并且对于良态量子态$ρ$和$σ$,这些算法的速度显著更快。

0
下载
关闭预览

相关内容

相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量。在在信息理论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值.
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员