Geometric matching is an important topic in computational geometry and has been extensively studied over decades. In this paper, we study a geometric-matching problem, known as geometric many-to-many matching. In this problem, the input is a set $S$ of $n$ colored points in $\mathbb{R}^d$, which implicitly defines a graph $G = (S,E(S))$ where $E(S) = \{(p,q): p,q \in S \text{ have different colors}\}$, and the goal is to compute a minimum-cost subset $E^* \subseteq E(S)$ of edges that cover all points in $S$. Here the cost of $E^*$ is the sum of the costs of all edges in $E^*$, where the cost of a single edge $e$ is the Euclidean distance (or more generally, the $L_p$-distance) between the two endpoints of $e$. Our main result is a $(1+\varepsilon)$-approximation algorithm with an optimal running time $O_\varepsilon(n \log n)$ for geometric many-to-many matching in any fixed dimension, which works under any $L_p$-norm. This is the first near-linear approximation scheme for the problem in any $d \geq 2$. Prior to this work, only the bipartite case of geometric many-to-many matching was considered in $\mathbb{R}^1$ and $\mathbb{R}^2$, and the best known approximation scheme in $\mathbb{R}^2$ takes $O_\varepsilon(n^{1.5} \cdot \mathsf{poly}(\log n))$ time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员