In the modal approach to clustering, clusters are defined as the local maxima of the underlying probability density function, where the latter can be estimated either non-parametrically or using finite mixture models. Thus, clusters are closely related to certain regions around the density modes, and every cluster corresponds to a bump of the density. The Modal EM algorithm is an iterative procedure that can identify the local maxima of any density function. In this contribution, we propose a fast and efficient Modal EM algorithm to be used when the density function is estimated through a finite mixture of Gaussian distributions with parsimonious component-covariance structures. After describing the procedure, we apply the proposed Modal EM algorithm on both simulated and real data examples, showing its high flexibility in several contexts.


翻译:在集群模式办法中,集群被定义为潜在概率密度函数的本地最大值,后者可以非参数性地或使用有限的混合模型来估计。因此,集群与密度模式周围的某些地区密切相关,每个集群都与密度的碰撞相对应。模型EM算法是一种迭代程序,可以识别任何密度函数的本地最大值。在此贡献中,我们建议,在密度函数通过高山分布的有限混合物和有偏差的成分差异结构来估计时,可以使用快速高效的模型EM算法。在描述程序之后,我们将拟议的模型EM算法应用于模拟和真实数据实例,表明其在若干情况下的高度灵活性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月21日
Tree boosting for learning probability measures
Arxiv
0+阅读 · 2021年2月18日
Arxiv
0+阅读 · 2021年2月18日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员