In this study, we investigate the intricate connection between visual perception and the mathematical modelling of neural activity in the primary visual cortex (V1), focusing on replicating the MacKay effect [Mackay, Nature 1957]. While bifurcation theory has been a prominent mathematical approach for addressing issues in neuroscience, especially in describing spontaneous pattern formations in V1 due to parameter changes, it faces challenges in scenarios with localised sensory inputs. This is evident, for instance, in Mackay's psychophysical experiments, where the redundancy of visual stimuli information results in irregular shapes, making bifurcation theory and multi-scale analysis less effective. To address this, we follow a mathematical viewpoint based on the input-output controllability of an Amari-type neural fields model. This framework views the sensory input as a control function, cortical representation via the retino-cortical map of the visual stimulus that captures the distinct features of the stimulus, specifically the central redundancy in MacKay's funnel pattern ``MacKay rays''. From a control theory point of view, the exact controllability property of the Amari-type equation is discussed both for linear and nonlinear response functions. Then, applied to the MacKay effect replication, we adjust the parameter representing intra-neuron connectivity to ensure that, in the absence of sensory input, cortical activity exponentially stabilises to the stationary state that we perform quantitative and qualitative studies to show that it captures all the essential features of the induced after-image reported by MacKay


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员