This paper presents a comprehensive analysis and performance enhancement of short block length channel detection incorporating training information. The current communication systems' short block length channel detection typically consists of least squares channel estimation followed by quasi-coherent detection. By investigating the receiver structure, specifically the estimator-correlator, we show that the non-coherent term, often disregarded in conventional detection metrics, results in significant losses in performance and sensitivity in typical operating regimes of 5G and 6G systems. A comparison with the fully non-coherent receiver in multi-antenna configurations reveals substantial losses in low spectral efficiency operating areas. Additionally, we demonstrate that by employing an adaptive DMRS-data power adjustment, it is possible to reduce the performance loss gap, which is amenable to a more sensitive quasi-coherent receiver. However, both of the aforementioned ML detection strategies can result in substantial computational complexity when processing long bit-length codes. We propose an approach to tackle this challenge by introducing the principle of block or segment coding using First-Order RM Codes, which is amenable to low-cost decoding through block-based fast Hadamard transforms. The Block-based FHT has demonstrated to be cost-efficient with regards to decoding time, as it evolves from quadric to quasi-linear complexity with a manageable decline in performance. Additionally, by incorporating an adaptive DMRS-data power adjustment technique, we are able to bridge/reduce the performance gap with respect to the conventional maximum likelihood receiver and attain high sensitivity, leading to a good trade-off between performance and complexity to efficiently handle small payloads.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员