Relation triple extraction (RTE) is an essential task in information extraction and knowledge graph construction. Despite recent advancements, existing methods still exhibit certain limitations. They just employ generalized pre-trained models and do not consider the specificity of RTE tasks. Moreover, existing tagging-based approaches typically decompose the RTE task into two subtasks, initially identifying subjects and subsequently identifying objects and relations. They solely focus on extracting relational triples from subject to object, neglecting that once the extraction of a subject fails, it fails in extracting all triples associated with that subject. To address these issues, we propose BitCoin, an innovative Bidirectional tagging and supervised Contrastive learning based joint relational triple extraction framework. Specifically, we design a supervised contrastive learning method that considers multiple positives per anchor rather than restricting it to just one positive. Furthermore, a penalty term is introduced to prevent excessive similarity between the subject and object. Our framework implements taggers in two directions, enabling triples extraction from subject to object and object to subject. Experimental results show that BitCoin achieves state-of-the-art results on the benchmark datasets and significantly improves the F1 score on Normal, SEO, EPO, and multiple relation extraction tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

比特币(Bitcoin)是一种去中心化的点对点的电子货币。其特征包括:1、去中心化,将铸币权下放给个人,人人都可以生产;2、总量一定,是通货紧缩的货币;3、匿名/即时交易。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员