Universal Adversarial Perturbations (UAPs) are input perturbations that can fool a neural network on large sets of data. They are a class of attacks that represents a significant threat as they facilitate realistic, practical, and low-cost attacks on neural networks. In this work, we derive upper bounds for the effectiveness of UAPs based on norms of data-dependent Jacobians. We empirically verify that Jacobian regularization greatly increases model robustness to UAPs by up to four times whilst maintaining clean performance. Our theoretical analysis also allows us to formulate a metric for the strength of shared adversarial perturbations between pairs of inputs. We apply this metric to benchmark datasets and show that it is highly correlated with the actual observed robustness. This suggests that realistic and practical universal attacks can be reliably mitigated without sacrificing clean accuracy, which shows promise for the robustness of machine learning systems.


翻译:通用对称扰动(UAPs)是一种输入扰动,它可以欺骗神经网络,用大量数据来欺骗神经网络。它们是一种严重威胁,因为它有助于对神经网络进行现实的、实际的和低成本的攻击。在这项工作中,我们根据数据依赖的Jacobian人的准则,为UAPs的效力设定了上限。我们从经验上证实,Jacobian的正规化在保持清洁性能的同时,大大加强了对UAPs的稳健性模式。我们的理论分析还使我们能够为对投入进行的共同对称干扰的强度制定衡量标准。我们用这一衡量标准来衡量数据集的基准,并表明它与实际观察到的稳健性高度相关。这表明,在不牺牲清洁性的情况下,可以可靠地减少现实和实用的普遍攻击,这显示了机器学习系统的稳健的前景。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月10日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员