The realizable-to-agnostic transformation (Beimel et al., 2015; Alon et al., 2020) provides a general mechanism to convert a private learner in the realizable setting (where the examples are labeled by some function in the concept class) to a private learner in the agnostic setting (where no assumptions are imposed on the data). Specifically, for any concept class $\mathcal{C}$ and error parameter $\alpha$, a private realizable learner for $\mathcal{C}$ can be transformed into a private agnostic learner while only increasing the sample complexity by $\widetilde{O}(\mathrm{VC}(\mathcal{C})/\alpha^2)$, which is essentially tight assuming a constant privacy parameter $\varepsilon = \Theta(1)$. However, when $\varepsilon$ can be arbitrary, one has to apply the standard privacy-amplification-by-subsampling technique (Kasiviswanathan et al., 2011), resulting in a suboptimal extra sample complexity of $\widetilde{O}(\mathrm{VC}(\mathcal{C})/\alpha^2\varepsilon)$ that involves a $1/\varepsilon$ factor. In this work, we give an improved construction that eliminates the dependence on $\varepsilon$, thereby achieving a near-optimal extra sample complexity of $\widetilde{O}(\mathrm{VC}(\mathcal{C})/\alpha^2)$ for any $\varepsilon\le 1$. Moreover, our result reveals that in private agnostic learning, the privacy cost is only significant for the realizable part. We also leverage our technique to obtain a nearly tight sample complexity bound for the private prediction problem, resolving an open question posed by Dwork and Feldman (2018) and Dagan and Feldman (2020).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员