In this paper, we demonstrate how studying the rhetorics of ChatGPT prompt writing on social media can promote critical AI literacies. Prompt writing is the process of writing instructions for generative AI tools like ChatGPT to elicit desired outputs and there has been an upsurge of conversations about it on social media. To study this rhetorical activity, we build on four overlapping traditions of digital writing research in computers and composition that inform how we frame literacies, how we study social media rhetorics, how we engage iteratively and reflexively with methodologies and technologies, and how we blend computational methods with qualitative methods. Drawing on these four traditions, our paper shows our iterative research process through which we gathered and analyzed a dataset of 32,000 posts (formerly known as tweets) from X (formerly Twitter) about prompt writing posted between November 2022 to May 2023. We present five themes about these emerging AI literacy practices: (1) areas of communication impacted by prompt writing, (2) micro-literacy resources shared for prompt writing, (3) market rhetoric shaping prompt writing, (4) rhetorical characteristics of prompts, and (5) definitions of prompt writing. In discussing these themes and our methodologies, we highlight takeaways for digital writing teachers and researchers who are teaching and analyzing critical AI literacies.


翻译:本文阐述了通过研究社交媒体上ChatGPT提示词写作的修辞学如何促进批判性AI素养。提示词写作是指为ChatGPT等生成式AI工具撰写指令以获取期望输出的过程,社交媒体上相关讨论近期激增。为研究这一修辞活动,我们借鉴了计算机与写作领域中数字写作研究的四个相互重叠的传统,这些传统塑造了我们界定素养的方式、研究社交媒体修辞学的方法、迭代性与反思性结合方法论与技术的方式,以及融合计算方法与质性研究的路径。基于这四大传统,本文展示了我们通过迭代研究过程收集并分析的数据集——该数据集包含2022年11月至2023年5月期间X平台(原Twitter)上关于提示词写作的32,000条推文。我们提出了关于这些新兴AI素养实践的五个主题:(1)受提示词写作影响的传播领域,(2)为提示词写作共享的微观素养资源,(3)形塑提示词写作的市场化修辞,(4)提示词的修辞特征,以及(5)提示词写作的定义。在探讨这些主题及方法论时,我们为从事批判性AI素养教学与研究的数字写作教师及学者提供了关键启示。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员