We study the problem of sequentially testing individuals for a binary disease outcome whose true risk is governed by an unknown logistic model. At each round, a patient arrives with feature vector $x_t$, and the decision maker may either pay to administer a (noiseless) diagnostic test--revealing the true label--or skip testing and predict the patient's disease status based on their feature vector and prior history. Our goal is to minimize the total number of costly tests required while guaranteeing that the fraction of misclassifications does not exceed a prespecified error tolerance $\alpha$, with probability at least $1-\delta$. To address this, we develop a novel algorithm that interleaves label-collection and distribution estimation to estimate both $\theta^{*}$ and the context distribution $P$, and computes a conservative, data-driven threshold $\tau_t$ on the logistic score $|x_t^\top\theta|$ to decide when testing is necessary. We prove that, with probability at least $1-\delta$, our procedure does not exceed the target misclassification rate, and requires only $O(\sqrt{T})$ excess tests compared to the oracle baseline that knows both $\theta^{*}$ and the patient feature distribution $P$. This establishes the first no-regret guarantees for error-constrained logistic testing, with direct applications to cost-sensitive medical screening. Simulations corroborate our theoretical guarantees, showing that in practice our procedure efficiently estimates $\theta^{*}$ while retaining safety guarantees, and does not require too many excess tests.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员