With the widespread adoption of Large Language Models (LLMs), the demand for high-performance LLM inference services continues to grow. To meet this demand, a growing number of AI accelerators have been proposed, such as Google TPU, Huawei NPU, Graphcore IPU, and Cerebras WSE, etc. Most of these accelerators adopt multi-core architectures to achieve enhanced scalability, but lack the flexibility of SIMT architectures. Therefore, without careful configuration of the hardware architecture, as well as deliberate design of tensor parallelism and core placement strategies, computational resources may be underutilized, resulting in suboptimal inference performance. To address these challenges, we first present a multi-level simulation framework with both transaction-level and performance-model-based simulation for multi-core NPUs. Using this simulator, we conduct a systematic analysis and further propose the optimal solutions for tensor parallelism strategies, core placement policies, memory management methods, as well as the selection between PD-disaggregation and PD-fusion on multi-core NPUs. We conduct comprehensive experiments on representative LLMs and various NPU configurations. The evaluation results demonstrate that, our solution can achieve 1.32x-6.03x speedup compared to SOTA designs for multi-core NPUs across different hardware configurations. As for LLM serving, our work offers guidance on designing optimal hardware architectures and serving strategies for multi-core NPUs across various LLM workloads.
翻译:暂无翻译