Already since the 1950s TRIZ shows that patents and the technical contradictions they solve are an important source of inspiration for the development of innovative products. However, TRIZ is a heuristic based on a historic patent analysis and does not make use of the ever-increasing number of latest technological solutions in current patents. Because of the huge number of patents, their length, and, last but not least, their complexity there is a need for modern patent retrieval and patent analysis to go beyond keyword-oriented methods. Recent advances in patent retrieval and analysis mainly focus on dense vectors based on neural AI Transformer language models like Google BERT. They are, for example, used for dense retrieval, question answering or summarization and key concept extraction. A research focus within the methods for patent summarization and key concept extraction are generic inventive concepts respectively TRIZ concepts like problems, solutions, advantage of invention, parameters, and contradictions. Succeeding rule-based approaches, finetuned BERT-like language models for sentence-wise classification represent the state-of-the-art of inventive concept extraction. While they work comparatively well for basic concepts like problems or solutions, contradictions - as a more complex abstraction - remain a challenge for these models. This paper goes one step further, as it presents a method to extract TRIZ contradictions from patent texts based on Prompt Engineering using a generative Large Language Model (LLM), namely OpenAI's GPT-4. Contradiction detection, sentence extraction, contradiction summarization, parameter extraction and assignment to the 39 abstract TRIZ engineering parameters are all performed in a single prompt using the LangChain framework. Our results show that "off-the-shelf" GPT-4 is a serious alternative to existing approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专利(Patent)是专知网收录整理的一个重要资料文档板块,旨在通过人机协作的方式整理、挖掘国内外发明专利信息,提供便于科技工作者查阅的高质量知识信息。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2023年8月13日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员