We prove the first hardness results against efficient proof search by quantum algorithms. We show that under Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no quantum algorithm can weakly automate $\mathbf{TC}^0$-Frege. This extends the line of results of Kraj\'i\v{c}ek and Pudl\'ak (Information and Computation, 1998), Bonet, Pitassi, and Raz (FOCS, 1997), and Bonet, Domingo, Gavald\`a, Maciel, and Pitassi (Computational Complexity, 2004), who showed that Extended Frege, $\mathbf{TC}^0$-Frege and $\mathbf{AC}^0$-Frege, respectively, cannot be weakly automated by classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are secure. To the best of our knowledge, this is the first interaction between quantum computation and propositional proof search.


翻译:我们证明了针对量子算法高效证明搜索的首个困难性结果。我们表明,在基于格的标准密码学假设——带误差学习(LWE)下,任何量子算法都无法弱自动化 $\mathbf{TC}^0$-Frege。这扩展了 Krajíček 与 Pudlák(Information and Computation, 1998)、Bonet、Pitassi 与 Raz(FOCS, 1997)以及 Bonet、Domingo、Gavaldà、Maciel 与 Pitassi(Computational Complexity, 2004)的研究成果,他们分别证明了如果 RSA 密码系统或 Diffie-Hellman 密钥交换协议是安全的,则经典算法无法弱自动化 Extended Frege、$\mathbf{TC}^0$-Frege 和 $\mathbf{AC}^0$-Frege。据我们所知,这是量子计算与命题证明搜索领域的首次交叉研究。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年2月15日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员