Program synthesis has emerged as a successful approach to the image parsing task. Most prior works rely on a two-step scheme involving supervised pretraining of a Seq2Seq model with synthetic programs followed by reinforcement learning (RL) for fine-tuning with real reference images. Fully unsupervised approaches promise to train the model directly on the target images without requiring curated pretraining datasets. However, they struggle with the inherent sparsity of meaningful programs in the search space. In this paper, we present the first unsupervised algorithm capable of parsing constructive solid geometry (CSG) images into context-free grammar (CFG) without pretraining via non-differentiable renderer. To tackle the \emph{non-Markovian} sparse reward problem, we combine three key ingredients -- (i) a grammar-encoded tree LSTM ensuring program validity (ii) entropy regularization and (iii) sampling without replacement from the CFG syntax tree. Empirically, our algorithm recovers meaningful programs in large search spaces (up to $3.8 \times 10^{28}$). Further, even though our approach is fully unsupervised, it generalizes better than supervised methods on the synthetic 2D CSG dataset. On the 2D computer aided design (CAD) dataset, our approach significantly outperforms the supervised pretrained model and is competitive to the refined model.


翻译:作为图像分析任务的成功方法,大多数先前的工作都依赖于一个两步制计划,即对Seq2Seq2Seqeq模型进行有监督的预先培训,先用合成程序对Seq2Sequ 模型进行预先培训,然后用真实的参考图像进行微调。完全不受监督的方法承诺直接对目标图像进行模型培训,而不需要经过整理的预培训数据集。然而,它们与在搜索空间中有意义的程序固有的广度抗争。在本文中,我们展示了第一个能够将建设性固态(CSG)图像分解为无背景的语法(CFG)的不受监督的预培训,然后通过非区别的成型软件进行预培训。为了解决emph{non-marn-Markovian}稀薄的奖励问题,我们将三个关键要素(一) 语法编码的LSTM树确保程序的有效性(二) 调制和(三) 取样时不替换CFG合成数据树的模型。 活性,我们的算法在大型搜索空间中恢复了有意义的程序(最高为3.8\timed-DSqmed surviewd d) 数据。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
19+阅读 · 2020年7月21日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员