Personalized Federated Learning (PFL) is proposed to find the greatest personalized models for each client. To avoid the central failure and communication bottleneck in the server-based FL, we concentrate on the Decentralized Personalized Federated Learning (DPFL) that performs distributed model training in a Peer-to-Peer (P2P) manner. Most personalized works in DPFL are based on undirected and symmetric topologies, however, the data, computation and communication resources heterogeneity result in large variances in the personalized models, which lead the undirected aggregation to suboptimal personalized performance and unguaranteed convergence. To address these issues, we propose a directed collaboration DPFL framework by incorporating stochastic gradient push and partial model personalized, called \textbf{D}ecentralized \textbf{Fed}erated \textbf{P}artial \textbf{G}radient \textbf{P}ush (\textbf{DFedPGP}). It personalizes the linear classifier in the modern deep model to customize the local solution and learns a consensus representation in a fully decentralized manner. Clients only share gradients with a subset of neighbors based on the directed and asymmetric topologies, which guarantees flexible choices for resource efficiency and better convergence. Theoretically, we show that the proposed DFedPGP achieves a superior convergence rate of $\mathcal{O}(\frac{1}{\sqrt{T}})$ in the general non-convex setting, and prove the tighter connectivity among clients will speed up the convergence. The proposed method achieves state-of-the-art (SOTA) accuracy in both data and computation heterogeneity scenarios, demonstrating the efficiency of the directed collaboration and partial gradient push.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
76+阅读 · 2022年3月26日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年2月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员