The Multidepot Capacitated Vehicle Routing Problem (MCVRP) is a well-known variant of the classic Capacitated Vehicle Routing Problem (CVRP), where we need to route capacitated vehicles located in multiple depots to serve customers' demand such that each vehicle must return to the depot it starts, and the total traveling distance is minimized. There are three variants of MCVRP according to the property of the demand: unit-demand, splittable and unsplittable. We study approximation algorithms for $k$-MCVRP in metric graphs where $k$ is the capacity of each vehicle, and all three versions are APX-hard for any constant $k\geq 3$. Previously, Li and Simchi-Levi proposed a $(2\alpha+1-\alpha/k)$-approximation algorithm for splittable and unit-demand $k$-MCVRP and a $(2\alpha+2-2\alpha/k)$-approximation algorithm for unsplittable $k$-MCVRP, where $\alpha=3/2-10^{-36}$ is the current best approximation ratio for metric TSP. Harks et al. further improved the ratio to 4 for the unsplittable case. We give a $(4-1/1500)$-approximation algorithm for unit-demand and splittable $k$-MCVRP, and a $(4-1/50000)$-approximation algorithm for unsplittable $k$-MCVRP. Furthermore, we give a $(3+\ln2-\max\{\Theta(1/\sqrt{k}),1/9000\})$-approximation algorithm for splittable and unit-demand $k$-MCVRP, and a $(3+\ln2-\Theta(1/\sqrt{k}))$-approximation algorithm for unsplittable $k$-MCVRP under the assumption that the capacity $k$ is a fixed constant. Our results are based on recent progress in approximating CVRP.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2023年6月23日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员