This paper investigates risk bounds for quantile additive trend filtering, a method gaining increasing significance in the realms of additive trend filtering and quantile regression. We investigate the constrained version of quantile trend filtering within additive models, considering both fixed and growing input dimensions. In the fixed dimension case, we discover an error rate that mirrors the non-quantile minimax rate for additive trend filtering, featuring the main term $n^{-2r/(2r+1)}V^{2/(2r+1)}$, when the underlying quantile function is additive, with components whose $(r-1)$th derivatives are of bounded variation by $V$. In scenarios with a growing input dimension $d$, quantile additive trend filtering introduces a polynomial factor of $d^{(2r+2)/(2r+1)}$. This aligns with the non-quantile variant, featuring a linear factor $d$, particularly pronounced for larger $r$ values. Additionally, we propose a practical algorithm for implementing quantile trend filtering within additive models, using dimension-wise backfitting. We conduct experiments with evenly spaced data points or data that samples from a uniform distribution in the interval $[0,1]$, applying distinct component functions and introducing noise from normal and heavy-tailed distributions. Our findings confirm the estimator's convergence as $n$ increases and its superiority, particularly in heavy-tailed distribution scenarios. These results deepen our understanding of additive trend filtering models in quantile settings, offering valuable insights for practical applications and future research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月2日
Arxiv
0+阅读 · 2023年12月1日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年12月2日
Arxiv
0+阅读 · 2023年12月1日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员