Computer Use Agents (CUAs) are designed to autonomously operate digital interfaces, yet they often fail to reliably determine whether a given task has been completed. We present an autonomous evaluation and feedback framework that uses vision-language models to assess task completion directly from screenshots and task descriptions. Our dataset covers 42 built-in macOS applications and 1,260 human-labeled tasks across a wide range of scenarios. Our framework achieves up to 73 percent accuracy in task success detection and yields an average relative improvement of 27 percent in overall task success when evaluator feedback is applied. These results show that vision-based evaluation can serve as an effective feedback mechanism that improves the reliability and self-correction of autonomous computer-use agents.


翻译:计算机使用代理旨在自主操作数字界面,但其往往难以可靠判断给定任务是否已完成。本文提出一种自主评估与反馈框架,利用视觉语言模型直接从屏幕截图和任务描述中评估任务完成度。我们的数据集涵盖42个内置macOS应用程序及1,260个人工标注任务,覆盖广泛场景。该框架在任务成功检测中达到最高73%的准确率,应用评估反馈后整体任务成功率平均相对提升27%。结果表明,基于视觉的评估可作为有效反馈机制,提升自主计算机使用代理的可靠性与自我修正能力。

0
下载
关闭预览

相关内容

CVPR 2022 将于2022年 6 月 21-24 日在美国的新奥尔良举行。CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议,会议的主要内容是计算机视觉与模式识别技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员