Federated Learning has emerged as a dominant computational paradigm for distributed machine learning. Its unique data privacy properties allow us to collaboratively train models while offering participating clients certain privacy-preserving guarantees. However, in real-world applications, a federated environment may consist of a mixture of benevolent and malicious clients, with the latter aiming to corrupt and degrade federated model's performance. Different corruption schemes may be applied such as model poisoning and data corruption. Here, we focus on the latter, the susceptibility of federated learning to various data corruption attacks. We show that the standard global aggregation scheme of local weights is inefficient in the presence of corrupted clients. To mitigate this problem, we propose a class of task-oriented performance-based methods computed over a distributed validation dataset with the goal to detect and mitigate corrupted clients. Specifically, we construct a robust weight aggregation scheme based on geometric mean and demonstrate its effectiveness under random label shuffling and targeted label flipping attacks.


翻译:联邦学习联盟已成为分布式机器学习的主要计算模式。它独特的数据隐私特性使我们能够合作培训模型,同时向参与的客户提供某些隐私保护保障。然而,在现实应用中,联合环境可能由慈善和恶意的客户混合组成,后者的目的是腐蚀和削弱联邦模式的绩效。不同的腐败计划,例如模式中毒和数据腐败,可以适用不同的腐败计划。我们在这里关注后者,即联合学习容易受到各种数据腐败袭击。我们显示,当腐败客户出现时,当地加权标准全球汇总计划效率低下。为了缓解这一问题,我们建议了一组基于任务的基于绩效的方法,对分布式验证数据集进行计算,目的是检测和减轻腐败客户的绩效。具体地说,我们根据几何平均值构建一个强力的权重汇总计划,并在随机标签打乱和有针对性的标签翻动攻击下展示其有效性。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月21日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员