This paper introduces a new regularized version of the robust $\tau$-regression estimator for analyzing high-dimensional datasets subject to gross contamination in the response variables and covariates (explanatory variables). The resulting estimator, termed adaptive $\tau$-Lasso, is robust to outliers and high-leverage points. It also incorporates an adaptive $\ell_1$-norm penalty term, which enables the selection of relevant variables and reduces the bias associated with large true regression coefficients. More specifically, this adaptive $\ell_1$-norm penalty term assigns a weight to each regression coefficient. For a fixed number of predictors $p$, we show that the adaptive $\tau$-Lasso has the oracle property, ensuring both variable-selection consistency and asymptotic normality. Asymptotic normality applies only to the entries of the regression vector corresponding to the true support, assuming knowledge of the true regression vector support. We characterize its robustness via the finite-sample breakdown point and the influence function. We carry out extensive simulations and observe that the class of $\tau$-Lasso estimators exhibits robustness and reliable performance in both contaminated and uncontaminated data settings. We also validate our theoretical findings on robustness properties through simulation experiments. In the face of outliers and high-leverage points, the adaptive $\tau$-Lasso and $\tau$-Lasso estimators achieve the best performance or close-to-best performance in terms of prediction and variable selection accuracy compared to other competing regularized estimators for all scenarios considered in this study. Therefore, the adaptive $\tau$-Lasso and $\tau$-Lasso estimators can be effectively employed for a variety of sparse linear regression problems, particularly in high-dimensional settings and when the data is contaminated by outliers and high-leverage points.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员