Nishikawa (2007) proposed to reformulate the classical Poisson equation as a steady state problem for a linear hyperbolic system. This results in optimal error estimates for both the solution of the elliptic equation and its gradient. However, it prevents the application of well-known solvers for elliptic problems. We show connections to a discontinuous Galerkin (DG) method analyzed by Cockburn, Guzm\'an, and Wang (2009) that is very difficult to implement in general. Next, we demonstrate how this method can be implemented efficiently using summation by parts (SBP) operators, in particular in the context of SBP DG methods such as the DG spectral element method (DGSEM). The resulting scheme combines nice properties of both the hyperbolic and the elliptic point of view, in particular a high order of convergence of the gradients, which is one order higher than what one would usually expect from DG methods for elliptic problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员