The evolution of human intelligence led to the huge amount of data in the information space. Accessing and processing this data helps in finding solutions to applied problems based on finite-dimensional models. We argue, that formally, such a mathematical model can be embedded into a higher-dimensional model inside of which a desired solution will exist. In our model, the physical world and the information space are submanifolds of infinite-dimensional Hilbert spaces, and the processes, including information transmission, are maps between the submanifolds of the physical world or of the information space. We discuss how our perspective fits in the context of existing literature. Our theorem states that a submanifold in the parameter space of the physical world can be deformed to a target submanifold outside that space, with an appropriate count of the deformation parameters. We interpret this assertion as an existence result for a class of problems and we discuss further steps.
翻译:人类智能的演化导致了信息空间中数据量的急剧增长。访问并处理这些数据有助于基于有限维模型寻找应用问题的解决方案。我们认为,从形式上看,此类数学模型可嵌入一个更高维的模型,使得期望解存在于该高维模型内部。在我们的模型中,物理世界与信息空间均为无限维希尔伯特空间的子流形,而包括信息传输在内的过程则是物理世界或信息空间子流形之间的映射。我们探讨了该观点在现有文献背景下的定位。我们的定理表明:物理世界参数空间中的子流形可通过适当数量的形变参数,形变为该空间之外的目标子流形。我们将此结论解释为一类问题解的存在性结果,并对后续研究方向进行了讨论。