Mobile apps frequently use Bluetooth Low Energy (BLE) and WiFi scanning permissions to discover nearby devices like peripherals and connect to WiFi Access Points (APs). However, wireless interfaces also serve as a covert proxy for geolocation data, enabling continuous user tracking and profiling. This includes technologies like BLE beacons, which are BLE devices broadcasting unique identifiers to determine devices' indoor physical locations; such beacons are easily found in shopping centres. Despite the widespread use of wireless scanning APIs and their potential for privacy abuse, the interplay between commercial mobile SDKs with wireless sensing and beaconing technologies remains largely unexplored. In this work, we conduct the first systematic analysis of 52 wireless-scanning SDKs, revealing their data collection practices and privacy risks. We develop a comprehensive analysis pipeline that enables us to detect beacon scanning capabilities, inject wireless events to trigger app behaviors, and monitor runtime execution on instrumented devices. Our findings show that 86% of apps integrating these SDKs collect at least one sensitive data type, including device and user identifiers such as AAID, email, along with GPS coordinates, WiFi and Bluetooth scan results. We uncover widespread SDK-to-SDK data sharing and evidence of ID bridging, where persistent and resettable identifiers are shared and synchronized within SDKs embedded in applications to potentially construct detailed mobility profiles, compromising user anonymity and enabling long-term tracking. We provide evidence of key actors engaging in these practices and conclude by proposing mitigation strategies such as stronger SDK sandboxing, stricter enforcement of platform policies, and improved transparency mechanisms to limit unauthorized tracking.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员