Bayesian inference can quantify uncertainty in the predictions of neural networks using posterior distributions for model parameters and network output. By looking at these posterior distributions, one can separate the origin of uncertainty into aleatoric and epistemic contributions. One goal of uncertainty quantification is to inform on prediction accuracy. Here we show that prediction accuracy depends on both epistemic and aleatoric uncertainty in an intricate fashion that cannot be understood in terms of marginalized uncertainty distributions alone. How the accuracy relates to epistemic and aleatoric uncertainties depends not only on the model architecture, but also on the properties of the dataset. We discuss the significance of these results for active learning and introduce a novel acquisition function that outperforms common uncertainty-based methods. To arrive at our results, we approximated the posteriors using deep ensembles, for fully-connected, convolutional and attention-based neural networks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员