The optimal error exponents of binary composite i.i.d. state discrimination are trivially bounded by the worst-case pairwise exponents of discriminating individual elements of the sets representing the two hypotheses, and in the finite-dimensional classical case, these bounds in fact give exact single-copy expressions for the error exponents. In contrast, in the non-commutative case, the optimal exponents are only known to be expressible in terms of regularized divergences, resulting in formulas that, while conceptually relevant, practically not very useful. In this paper, we develop further an approach initiated in [Mosonyi, Szil\'agyi, Weiner, IEEE Trans. Inf. Th. 68(2):1032--1067, 2022] to give improved single-copy bounds on the error exponents by comparing not only individual states from the two hypotheses, but also various unnormalized positive semi-definite operators associated to them. Here, we show a number of equivalent characterizations of such operators giving valid bounds, and show that in the commutative case, considering weighted geometric means of the states, and in the case of two states per hypothesis, considering weighted Kubo-Ando geometric means, are optimal for this approach. As a result, we give a new characterization of the weighted Kubo-Ando geometric means as the only $2$-variable operator geometric means that are block additive, tensor multiplicative, and satisfy the arithmetic-geometric mean inequality. We also extend our results to composite quantum channel discrimination, and show an analogous optimality property of the weighted Kubo-Ando geometric means of two quantum channels, a notion that seems to be new. We extend this concept to defining the notion of superoperator perspective function and establish some of its basic properties, which may be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员