We propose discriminative reward co-training (DIRECT) as an extension to deep reinforcement learning algorithms. Building upon the concept of self-imitation learning (SIL), we introduce an imitation buffer to store beneficial trajectories generated by the policy determined by their return. A discriminator network is trained concurrently to the policy to distinguish between trajectories generated by the current policy and beneficial trajectories generated by previous policies. The discriminator's verdict is used to construct a reward signal for optimizing the policy. By interpolating prior experience, DIRECT is able to act as a surrogate, steering policy optimization towards more valuable regions of the reward landscape thus learning an optimal policy. Our results show that DIRECT outperforms state-of-the-art algorithms in sparse- and shifting-reward environments being able to provide a surrogate reward to the policy and direct the optimization towards valuable areas.


翻译:我们提议将歧视性奖励共同培训(直接)作为深层强化学习算法的延伸。基于自我计量学习(SIL)概念,我们引入了仿制缓冲,以储存由其返回后决定的政策所产生的有益轨迹。一个歧视者网络与该政策同时接受培训,以区分现行政策产生的轨迹和以往政策产生的有益轨迹。歧视者的裁决被用来构建一个优化政策的奖赏信号。通过将先前的经验相互推导,指导政策优化成为替代方,引导政策优化走向更有价值的地区,从而学习最佳政策。我们的结果显示,在稀疏和转移环境中,指导方优于最先进的算法,能够为政策提供代金奖,并将优化方向转向有价值的领域。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员