An input- and output-sensitive GCD algorithm for multi-variate polynomials over finite fields is proposed by combining the modular method with the Ben-Or/Tiwari sparse interpolation. The bit complexity of the algorithm is given and is sensitive to the sparse representation, while for previous sparse GCD algorithms, the complexities were given only in some special cases. It is shown that the new algorithm is superior both in theory and in practice comparing with existing GCD algorithms: the complexity in the degree is decreased from quadratic to linear and the running times are decreased by 1-3 orders of magnitude in various benchmarks.


翻译:通过将模块法与Ben-Or/Tiwari稀少的内插法相结合,提议对有限字段的多变量多元多数值采用对输入和产出敏感的GCD算法。这种算法略为复杂,而且对稀疏的表示十分敏感,而对于以前稀疏的GCD算法,只在一些特殊情况下才给出了复杂性。这表明新的算法在理论和实践上都优于现有的GCD算法:从四面形到线形的复杂程度下降,运行时间在各种基准中减少1-3级数量。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月16日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员